

Controlled coefficient of expansion (which decreases with rising temperature to the inflection point)

Matches the expansion rate of borosilicate glasses and

IMPORTANT

We will manufacture to your required mechanical properties.

key advantages to you, our customer

0.025mm to 21mm (.001" to .827")

Order 3m to 3t (10 ft to 6000 Lbs)

Delivery: within 3 weeks

Wire to your spec

E.M.S available

Technical support

NILO® K available in:-

- Round wire
- Bars or lengths
- Flat wire
- Shaped wire
- Rope/Strand

Packaging

- Coils
- Spools
- Bars or lengths

*Trade name of Special Metals Group of Companies.

Technical Datasheet AWS 094 Rev.1

NILO® K

Chemical Composition			Specifications	Key Features	Typical Applications
Element	Min %	Max %	ASTM F15	Controlled coefficient of expansion (which	Glass to metal seals in
Fe	Fe 53.00 nominal			decreases with rising temperature to the inflection point)	applications requiring high reliability or resistance to thermal shock, ie. high power transmitting valves
Ni	Ni 29.00 nominal		Designations	Matches the expansion rate of borosilicate	
Со	Co 17.00 nominal		W.Nr. 1.3981	glasses and alumina ceramics	
Mn	-	0.50	UNS K94610 AWS 094		
Si	-	0.20	7,445 65 1		
С	-	0.04			
Al	-	0.10			
Mg	-	0.10			
Zr	-	0.10			
Ti	-	0.10			
Cu	-	0.20			
Cr	-	0.20			
Мо	-	0.20			

Density	8.16 g/cm ³	0.295 lb/in ³
Melting Point	1450 °C	2640 °F
Inflection Point	450 °C	840 °F
Thermal Conductivity	16.7 W/m• °C	116 btu•in/ft²•h °F
Coefficient of Expansion	6.0 μm/m °C (20 – 100 °C) 4.6 – 5.2 μm/m °C (20 – 400 °C)	3.3 x 10 ⁻⁶ in/in °F (70 – 212 °F) 2.6 – 2.9 x 10 ⁻⁶ in/in °F (70 – 752 °F)

Heat Treatment of Finished Parts

The Nilo alloys are usually supplied and used in the annealed condition (residual cold work distorts the coefficients of thermal expansion). Annealing times may vary due to section thickness. Oxidizing time and temperature to be selected depending on required oxide thickness.

	Toma	Temperature		Time o (Ulv)	Casling
	Type	°C	°F	Time (Hr)	Cooling
	Anneal	850 – 1000	1560 – 1830	0.5	Air or water
To prepare for glass to metal sealing	Decarburization	900 – 1050	1650 – 1920	1	Air or water
If a metal oxide interface is required (time and temperature depend on required oxide thickness)	Oxidize	600 – 1000	1110 – 1830	1	Air

Properties							
Condition	Approx. tensile stren	gth	Approx. operating temperature				
Condition	N/mm²	ksi	°C	°F			
Annealed	450 – 550	65 – 80	up to +400	up to +750			
Hard Drawn	700 – 900	102 – 131	up to +400	up to +750			

 $\label{thm:continuous} The above tensile strength \ ranges \ are \ typical. \ If you \ require \ different \ please \ ask.$

